Identificación de variedades de aceitunas a partir del endocarpo utilizando visión por computador
- E. M. Ortega Vázquez 1
- D. Martínez Gila 1
- S. Satorres Martínez 1
- J. Gómez Ortega 1
- J. Gámez García 1
-
1
Universidad de Jaén
info
- Inés Tejado Balsera (coord.)
- Emiliano Pérez Hernández (coord.)
- Antonio José Calderón Godoy (coord.)
- Isaías González Pérez (coord.)
- Pilar Merchán García (coord.)
- Jesús Lozano Rogado (coord.)
- Santiago Salamanca Miño (coord.)
- Blas M. Vinagre Jara (coord.)
Editorial: Universidad de Extremadura
ISBN: 978-84-9749-756-5, 978-84-09-04460-3
Año de publicación: 2018
Páginas: 1014-1021
Congreso: Jornadas de Automática (39. 2018. Badajoz)
Tipo: Aportación congreso
Resumen
The identification of olives is of great importance for a multitude of factors, including harvesting, olive oil production process and trade exchanges. Precisely identifying varieties is a time-consuming task in addition to trained experts or specific and expensive equipment. When applying the traditional method, also known as morphological, a specialist assesses morphological features using the olive endocarp. In this paper a proposal to automate this identification methodology is presented. Endocarp images are acquired and analyzed to extract the endocarp features, processed by Wilk’s Lambda. Then, the varieties are identified by two classifiers: partial least squares discriminant analysis and different support vector machines. The proposal has been tested on a set of 250 samples from 5 varieties from the south of Spain.