El problema de la falta de respuestaalternativas para su tratamiento en la construcción de estimadores indirectos

  1. González Aguilera, Silvia
Zuzendaria:
  1. María del Mar Rueda García Zuzendaria

Defentsa unibertsitatea: Universidad de Granada

Fecha de defensa: 2002(e)ko uztaila-(a)k 09

Epaimahaia:
  1. Ramón Gutiérrez Jáimez Presidentea
  2. Josefa Linares Pérez Idazkaria
  3. Antonio Pascual Acosta Kidea
  4. Luis Parras Guijosa Kidea
  5. Emilio Damián Lozano Aguilera Kidea

Mota: Tesia

Teseo: 87548 DIALNET

Laburpena

Existen diversas formas de tratar la no respuesta, así como diferentes procedimientos de imputación de los datos que faltan, utilizándose estos según las condiciones de la encuesta y los objetivos que se pretendan, En este trabajo se resumen los distintos métodos para evitar este problema en la fase de recogida de datos, así como durante las etapas de su procesamiento y análisis. La finalidad última de estos métodos es conseguir una matriz de datos lo más completa y precisa posible. Aún así, una vez realizada la recogida de datos, y llevaba a cabo la depuración, es muy frecuente encontrar faltas o errores en algunas entradas. Ante esta problemática, las posibles alternativas que se plantean son realizar un análisis de casos completos, utilizar algún procedimiento para imputar los datos que faltan o intentar construir estimadores de mayor precisión. El trabajo está centrado en la definición de estimadores indirectos eficientes en presencia de falta de respuesta parcial. Para los correspondientes estimadores de razón, diferencia y regresión se proponen dos alternativas para construir estimadores que incluyan todos los casos disponibles. Tras la propuesta de estos estimadores, se realiza un estudio de simulación utilizando cinco poblaciones de uso frecuente en la literatura de muestreo en poblaciones finitas. Por último, se recurre a su aplicación ponen de manifiesto el buen comportamiento de los estimadores propuestos, mostrando que todos ellos provocan disminuciones importantes en los correspondientes errores muestrales. Por tanto, la elección de estos estimadores conllevará estimaciones más precisas que permitirán reducir el tamaño de muestra necesario para conseguir un cierto error.