Tres tópicos en teoría de aproximación abstracta y aproximación clásicateoremas negativos, teoremas tipo Müntz y aproximación diofántica

  1. Toro Modolell, Naira del
Dirigida por:
  1. José María Almira Picazo Director
  2. Antonio Jesús López Moreno Director

Universidad de defensa: Universidad de Jaén

Año de defensa: 2004

Tribunal:
  1. Francisco Javier Muñoz Delgado Presidente
  2. José Ángel Cid Araújo Secretario
  3. Pablo González Vera Vocal
  4. Andrei Martínez Finkelshtein Vocal
  5. Domingo Barrera Rosillo Vocal
Departamento:
  1. MATEMÁTICAS

Tipo: Tesis

Teseo: 129135 DIALNET

Resumen

Este es un trabajo de teoría de aproximación. Los temas que se abordan tienen su origen en el trabajo realizado entre finales del s. XIX y mediados del s. XX por varios importantes matemáticos, entre los que cabe destacar a S.N. Bernstein, C. Ch. Müntz, H.S. Shapiro, Yu. Brundyi, L.B.. Ferguson y M. Von Golitscheck. Todos los resultados que se estudian están relacionados con el problema de la densidad de subconjuntos en el contexto de espacios quasi-banach. La memoria consta de dos capítulos. En el primero se demuestra un teorema negativo tipo Shapiro válido para esquemas de aproximación generales y se demuestra su potencia al ser aplicado en numerosos contextos de aproximación clásica. Además, se estudia una amplia gama de teoremas negativos y en particular, se demuestra un teorema de letargo de Berstein en espacios de Hilbert para cadenas de subespacios generales (sin imposición de restricciones a sus dimensiones) en el segundo capítulo se explota el uso de los polinomios de berstein, en la modificación introducida por Kantorovich en 1931, para borrar potencias en el problema de aproximación diofántica (y aproximación diofántica simultánea). En particular, se prueba un teorema de Muntz para aproximación diofántica en intervalos de diámetro transfinito menor que 1.