Sistema de Absorción de Vibraciones de amplio Espectro basado en un nuevo Muelle de Rigidez variable

  1. Angel G. Gonzalez-Rodriguez 1
  2. Antonio Gonzalez-Rodriguez 2
  3. Jesus M. Chacon 2
  4. Fernando J. Castillo 2
  1. 1 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

  2. 2 Universidad de Castilla-La Mancha
    info

    Universidad de Castilla-La Mancha

    Ciudad Real, España

    ROR https://ror.org/05r78ng12

Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2017

Volume: 14

Issue: 2

Pages: 163-173

Type: Article

DOI: 10.1016/J.RIAI.2016.11.005 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Abstract

This paper presents an adaptive tuned vibration absorber. The vibrations are absorbed by a secondary mass that is attached to the system through a new adjustable-stiffness spring, which consists of two pairs of leaf springs working in opposition. Its wide range of stiffness values (between 1kN m/s and 16kN m/s) allows the absorber to cancel vibration in the range 1.43–5.73Hz. A DC motor allows the spring to adjust its stiffness such that the vibration attenuation is maximum for any frequency in the mentioned interval. The vibration absorber has been included in a test bench modelling a second order system, and a set of experiments have been conducted that show a good agreement to the theoretical results for low magnitude excitations. However, as the excitation magnitude increases, the deviation from the linear behaviour impedes applying scalability and addition.

Bibliographic References

  • Acar, M., Yilmaz, C., 2013. Design of an adaptive passive dynamic vibration absorber composed of a string mass system equipped with negative stiffness tension adjusting mechanism. Journalof Sound and Vibration 332 (2), 231–245.
  • Ashour, O., Nayfeh, A., 2003. Experimental and numerical analysis of a nonlinear vibration absorber for the controlof plate vibrations. Journal of Vibration and Control1 (9), 209–234.
  • Brennan,M. J., 2006. Some recent developments in adaptive tuned vibration absorbers neutralisers. Shock& Vibration 13 (4/5), 531–543.
  • Davis, C., Lesieutre, G., 1995. A modal strain energy approach to the prediction of resistively shunted piezoceramic damping. Journal of Sound and Vibration 184 (1), 129–139.
  • Franchek, M., Ryan, M., Bernhard, R., 1996. Adaptive passive vibration control. Journal of Sound and Vibration 189 (5), 565 – 585.
  • Ginder, J. M., Schlotter, W. F., Nichols, M. E., 2001. Magnetorheological elastomers in tunable vibration absorbers. In: Proc. SPIE 4331, Smart Structures and Materials: Damping and Isolation.
  • Gonzalez-Rodriguez, A., Chacon, J., Donoso, A., Gonzalez-Rodriguez, A.,2011. Designof an adjustable stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation. Mechanism and Machine Theory 46 (12), 1970 – 1979.
  • Grappasonni, C., Habib, G., Detroux,T., Wang, F., Kerschen, G., Jensen, J.,September 2014. Practical designof a nonlinear tuned vibration absorber. In: ISMA International Conferenceon Noise and Vibration Engineering, Leuven, Belgium.
  • Ham, R., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D., September2009. Compliant actuator designs. Robotics Automation Magazine, IEEE16 (3), 81–94.
  • Liu, J., Liu, K., 2006.A tunable electromagnetic vibration absorber: Characterization and application. Journal of Sound and Vibration 295, 708 – 724.
  • Monroe, R. J., Shaw, S. W., Feb 2013. Nonlinear transient dynamics of pendulum torsional vibration absorbers part ii: Experimental results. Journal of Vibration and Acoustics.
  • Nagaya, K., Kurusu, A., Ikai, S., Shitani, Y., 1999. Vibration control of a structure by using a tunable absorber and a optimal vibration absorber under autotuning control. Journalof Sound and Vibration 228 (4), 773–792.
  • Oueini, S., Nayfeh, A., 2000. Analysis and application of a non linear vibration absorber. Journal of Vibration and Control (6), 999–1016.
  • Patten, W., Sack, R., He, Q., 1996. Controlled semiactive hydraulic vibration absorber for bridges. Journal of Structural Engineering 122 (2), 187–192.
  • Rao,S. S., 2004. Mechanical Vibrations, 4th edition. Pearson Prentice Hall.Trimboli, M., Wimmel, R., Breitbach, E., 1994. Quasi–active approach to vibration isolation using magnetic springs. In: Proc. SPIE.Vol. 2193. pp. 73–83.
  • Viguie, R., Kerschen, G., 2009. Design procedure of a nonlinear vibration absorber using bifurcation analysis. In: Proceedings of the IMAC-XXVII.
  • Walsh, P., Lamancusa, J., 1992. A variable stiffness vibration absorber for minimization of transient vibrations. Journal of Sound and Vibration 158 (2),195– 211.
  • Waterman, E. H., feb 1988. Vibration absorber with controllable resonance frequency. US Patent, patent 4 724 923.
  • Williams, K., Chiu, G., Bernhard, R., 2002. Adaptive passive absorbers usings hape memory alloys. Journalof Sound and Vibration 249 (5), 835 – 848.
  • Zhu, B., Rahn, C., Bakis, C., 2013. Fluidic flexible matrix composite vibration absorber for a cantilever beam. Journal of Vibration and Acoustics 137 (2).